Overview of the global distribution of class 1 integrons carrying metallo-β-lactamases

  • Alma López García Benemérita Universidad Autónoma de Puebla
  • Alejandro César Ruiz Tagle Benemérita Universidad Autónoma de Puebla
Keywords: mobile genetic elements, cassette genes, antimicrobial resistance

Abstract

Antibiotic resistance is an increasingly serious global health problem. Bacteria have been able to confront the evolutionary challenge and resist antimicrobial chemotherapy, often acquiring pre-existing resistance determinants from the bacterial genetic pool, such as insertion sequences, transposons, plasmids, integrons, among others. Integrons act as a reservoir of cassette genes, primarily in gram-negative bacteria associated with mobile genetic elements, leading to the spread of antimicrobial resistance among commensal and/or pathogenic bacteria, posing a serious global threat. This study aims to understand the worldwide spread of class 1 integrons carrying metallo-β-lactamases. An in silico search was conducted by analyzing data from the "Integrall Database." The results revealed 30 different species of gram-negative bacilli carrying class 1 integrons, with non-fermenting gram-negative bacilli and Enterobacterales predominating. There was also a high prevalence of two families of metallo-β-lactamases, IMP and VIM. Metallo-β-lactamases in class 1 integrons were found distributed across all five continents, reinforcing that the problem of resistance to β-lactams, including carbapenems mediated by enzymes, is a global issue. This has resulted in real complications for public health worldwide, dramatically impacting morbidity, mortality, and healthcare costs.

References

Akrami, F., Rajabnia, M. and Pournajaf, A. (2019). Resistance integrons; A mini review. Caspian J Intern Med, 10(4), 370–376. https//doi.org/10.22088/cjim.10.4.370

Ambler, R. P. (1980). The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci, 289(1036), 321-331. https//doi.org/10.1098/rstb.1980.0049

Astocondor, S. L. (2018). β-lactamasas: la evolución del problema. Rev Peru Investig Salud, 2(2), 42-49. https://doi.org/10.35839/repis.2.2.224

Boucher, Y., Labbate, M., Koenig, J. E. and Stokes, H. W. (2007). Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol, 15, 301-309. https://doi.org/10.1016/j.tim.2007.05.004

Cambray, G., Guerout, A. M. and Mazel, D. (2010). Integrons. Annu Rev Genet, 44, 141–166. https://doi.org/10.1146/annurev-genet-102209-163504

Castanheira, M., Toleman, M. A., Jones, R. N., Schmidt, F. J. and Walsh, T. R. (2004). Molecular characterization of a β-lactamase gene, blaGIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob Agents Chemother, 48(12), 4654-61. https://doi.org/10.1128/AAC.48.12.4654-4661.2004

Collignon, P. (2012). The importance of a one health approach to preventing the development and spread of antibiotic resistance. Curr Top Microbiol Immunol, 366, 19-36. https://doi.org/10.1007/82_2012_224

Crofts, T. S., Gasparrini, A. J. and Dantas, G. (2017). Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol, 15(7), 422-434. https://doi.org/10.1038/nrmicro.2017.28

Gillings, M., Boucher, Y., Labbate, M., Holmes, A., Krishnan, A., Holley, M. and Stokes, H. W. (2008). The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol, 190, 5095-5100. https://doi.org/10.1128/JB.00152-08

Hochhut, B., Lotfi, Y., Mazel, D., Faruque, S. M., Woodgate, R. and Waldor, M. K. (2001). Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother, 45, 2991-3000. https://doi.org/10.1128/AAC.45.11.2991-3000.2001

Lauretti, L., Riccio, M. L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R. and Rossolini, G. M. (1999). Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother, 43(7), 1584-90. https://doi.org/10.1128/AAC.43.7.1584

Lee, K., Yum, J. H., Yong, D., Lee, H. M., Kim, H. D., Docquier, J. D., Rossolini, G. M. and Chong, Y. (2005). Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother, 49(11), 4485-91. https://doi.org/10.1128/AAC.49.11.4485-4491.2005

Morejón, M. G. (2013). β-lactamasas de espectro extendido. Rev Cubana Med, 52(4), 272-280. http://scielo.sld.cu/pdf/med/v52n4/med06413.pdf

Moura, A., Soares, M., Pereira, C., Leitão, N., Henriques, I. and Correia, A. (2009). INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics, 25(8), 1096–1098. http://integrall.bio.ua.pt/

Oliver, A. (2004). Resistencia a carbapenemes y Acinetobacter baumannii. Enferm Infecc Microbiol Clin, 22(5), 259-261. https://doi.org/10.1016/s0213-005x(04)73083-9

Organización Mundial de la Salud (OMS) (2021a). La resistencia antimicrobiana pone en riesgo la salud mundial. OMS. https://www.paho.org/es/noticias/3-3-2021-resistencia-antimicrobiana-pone-riesgo-salud-mundial

Organización Mundial de la Salud (OMS) (2021b). Patógenos multirresistentes que son prioritarios para la OMS. https://www.paho.org/es/noticias/4-3-2021-patogenos-multirresistentes-que-son-prioritarios-para-oms

Osagie, E. A. and Olalekan, S. H. (2019) Multiple drug resistance: A fast-growing threat. Biomed J Sci & Tech Res., 21(2), 15715 -15726. https://doi.org/10.26717/BJSTR.2019.21.003572

Osano, E., Arakawa, Y., Wacharotayankun, R., Ohta, M., Horii, T., Ito, H., Yoshimura, F. y Kato, N. (1994). Molecular characterization of an enterobacterial metallo-β-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother, 38(1), 71-78. https://doi.org/10.1128/AAC.38.1.71

Partridge, S. R., Kwong, S. M., Firth, N. and Jensen S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev, 31(4), 1-61. https://doi.org/10.1128/CMR.00088-17

Richard, E., Darracq, B., Loot, C. and Mazel, D. (2022). Unbridled Integrons: A matter of host factors. Cells, 11(925). https://doi.org/10.3390/cells11060925

Rowe, M. D. A., Guérout, A. M. and Mazel, D. (1999). Super-integrons. Res Microbiol, 150, 641-51. https://doi.org/10.1016/s0923-2508(99)00127-8

Stokes, H. W. and Hall, R. M. (1989). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol, 3(12), 1669-1683. https://doi.org/10.1111/j.1365-2958.1989.tb00153.x

Toleman, M. A., Simm, A. M., Murphy, T. A., Gales, A. C., Biedenbach, D. J., Jones, R. N. and Walsh, T. R. (2002). Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance program. J Antimicrob Chemother, 50(5), 673-9. https://doi.org/10.1093/jac/dkf210

Published
2024-06-17
Section
Artículos Científicos